WNE Linear Algebra Final Exam Series A

6 February 2021

Problems

Please use separate files for different problems. Please provide the following data in each pdf file

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks.

Problem 1.

Let $V = \lim((2, 1, 9, 2), (1, 1, 5, 2), (1, 3, 7, 6))$ be a subspace of \mathbb{R}^4 .

- a) find a basis \mathcal{A} of the subspace V and the dimension of V,
- b) for which $t \in \mathbb{R}$ does the vector $v = (1, -2, 2, t) \in \mathbb{R}^4$ belong to V? for each such $t \in \mathbb{R}$ find coordinates of v relative to the basis \mathcal{A} .

Problem 2.

Let $V \subset \mathbb{R}^4$ be a subspace given by the homogeneous system of linear equations

- a) find a basis \mathcal{A} of the subspace V and the dimension of V,
- b) complete basis \mathcal{A} to a basis \mathcal{B} of the subspace $W \subset \mathbb{R}^4$, where

$$W = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + 2x_2 + 5x_3 + 14x_4 = 0 \}.$$

Problem 3.

Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ be a linear endomorphism given by the formula

$$\varphi((x_1, x_2, x_3)) = (5x_1 - 4x_2 + 4x_3, 6x_1 - 5x_2 + 6x_3, x_3)$$

- a) find the eigenvalues of φ and bases of the corresponding eigenspaces,
- b) compute A^{50} , where $A = M(\varphi)_{st}^{st}$.

Problem 4.

Let $\mathcal{A} = ((1,1,2), (1,0,1), (0,0,1))$ be an ordered basis of \mathbb{R}^3 . Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation given by the matrix

$$M(\varphi)_{\mathcal{A}}^{st} = \left[\begin{array}{rrrr} 1 & 2 & 0 \\ -2 & 3 & 1 \\ 3 & 1 & 2 \end{array} \right].$$

a) find the formula of φ ,

b) find the matrix $M(\varphi)_{st}^{\mathcal{A}}$.

Problem 5.

The affine subspaces $E, H \subset \mathbb{R}^3$ are given by

$$E = (1, 0, 2) + \lim((1, 0, 1)),$$

$$H = (1, 1, 3) + \lim((0, 1, 1))$$

$$H = (1, 1, 3) + \ln((0, 1, 1)).$$

i) describe the affine space E by a system of linear equations,

ii) check if the intersection of E and H is non–empty.

Problem 6.

Consider the following linear programming problem $-2x_3 + 2x_4 + 3x_5 \rightarrow \min$ in the standard form with constraints

5	$2x_1$	+	x_2	+	$12x_{3}$	+	$9x_4$	+	$3x_5$	=	16	and $m > 0$ for $i = 1$
Ì	x_1	$x_1 + x_2$	x_2	+	$8x_3$	+	$-6x_4$	+	$4x_5$	= 10	and $x_i \ge 0$ for $i = 1, \dots, 5$	

a) which of the sets $\mathcal{B}_1 = \{1, 2\}$, $\mathcal{B}_2 = \{3, 4\}$, $\mathcal{B}_3 = \{2, 5\}$ are basic? Which basic set is basic feasible? Write the corresponding feasible solution.

b) solve the linear programming problem using simplex method.